
www.manaraa.com

Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

5-1-2017 

Crosslinking Graphene Oxide and Chitosan to Form Scalable Crosslinking Graphene Oxide and Chitosan to Form Scalable 

Water Treatment Membranes Water Treatment Membranes 

Jose Mattei Sosa 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Sosa, Jose Mattei, "Crosslinking Graphene Oxide and Chitosan to Form Scalable Water Treatment 
Membranes" (2017). Theses and Dissertations. 1226. 
https://scholarsjunction.msstate.edu/td/1226 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1226?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


www.manaraa.com

Template C v3.0 (beta): Created by J. Nail 06/2015  

Crosslinking graphene oxide and chitosan to form scalable water treatment membranes 

By 
TITLE PAGE 

Jose Mattei Sosa 

A Thesis 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Master of Science 

in Civil and Environmental Engineering 
in the Department of Civil and Environmental Engineering 

Mississippi State, Mississippi 

May 2017 



www.manaraa.com

 

 

Copyright by 
COPYRIGHT PAGE 

Jose Mattei Sosa 

2017 



www.manaraa.com

 

 

Crosslinking graphene oxide and chitosan to form scalable water treatment membranes 

By 
APPROVAL PAGE 

Jose Mattei Sosa 

Approved: 

 ____________________________________ 
Veera Gnaneswar Gude 

(Major Professor) 

 ____________________________________ 
Dennis D. Truax 

(Committee Member) 

 ____________________________________ 
James L. Martin 

(Committee Member) 

 ____________________________________ 
John J. Ramirez-Avila 
(Committee Member) 

 ____________________________________ 
Christopher Griggs 

(Committee Member) 

 ____________________________________  
Jason M. Keith 

Dean 
Bagley College of Engineering 



www.manaraa.com

 

 

Name: Jose Mattei Sosa 
ABSTRACT 

Date of Degree: May 5, 2017 

Institution: Mississippi State University 

Major Field: Civil and Environmental Engineering 

Major Professor: Veera Gnaneswar Gude 

Title of Study: Crosslinking graphene oxide and chitosan to form scalable water 
treatment membranes 

Pages in Study: 58 

Candidate for Degree of Master of Science 

Graphene Oxide (GO) has emerged within the last decade as a next generation 

material for water treatment. Fabrication of graphene oxide membranes has been limited 

in scale and application due to repulsive hydration forces causing GO layers to 

electrostatically separate. In this study, chitosan is utilized to increase GO stability in the 

wet state through interactions with the negatively charged GO sheets (CSGO). This 

simple aqueous self-assembly allows scalable fabrication and enhanced stability for 

membrane applications in cross-flow. The CSGO membrane’s performance was tested in 

a cross-flow reactor and challenged with methylene blue at concentrations ranging from 

1 to 100 ppm at 345 kPa with fluxes ranging from 1 to 4.5 L/(m2 hr) with 100% removal 

by physical rejection. This work demonstrates that the CSGO composite matrix is a 

potential alternative to traditional polymeric membranes for water treatment using a 

renewable biopolymer and minimal chemical input. 
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CHAPTER I 

BACKGROUND 

Membrane filtration systems are widely used as a means to separate dissolved 

contaminants from water. While the effluent produced by these systems is of high 

quality, they suffer from a variety of issues which include high capital and operating 

costs, large quantities of wastewater/concentrate end products, and fouling. New 

membrane materials are sought to reduce these problems while also minimizing operation 

costs.  

Graphene Oxide (GO) has progressively been studied using computational models 

and also at laboratory studies (Cohen-Tanugi & Grossman, 2015). The studies focused on 

the preparation of laboratory-scale GO membranes. These studies have been successful in 

creating pristine, composite, and coated membranes. These have been tested solely in 

dead end flow systems (Huang et al., 2014; Lim, Huang, & Loo, 2012; J. Shen et al., 

2014; Y. Shen, Wang, Liu, & Zhang, 2015; Wang et al., 2015; Zhao, Xu, Chen, & Yang, 

2013). 

While these GO membranes have been successful at separating organic 

compounds at varying fluxes, most studies have centered on making GO membranes via 

vacuum assisted self-assembly (VASA) (M. Hu & Mi, 2013; Perreault, Fonseca de Faria, 

& Elimelech, 2015a). The membranes made by VASA tend to be smaller in shape since 
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they are restricted in size by the funnel and filter support size. Hence, they cannot be used 

on large cross-flow reactors.  

To overcome the size limitations of VASA, solution casting was used to create 

GO/chitosan composite membrane (CSGO) membranes for cross-flow (I prefer cross-

flow, because they both refer to a flow.) filtration. By using this method a membrane of 

any size could be manufactured.  

Graphene oxide materials and composites have been produced using vacuum 

filtration but the scalability factor of these materials has been an ongoing challenge. The 

purpose of this study is to demonstrate that graphene oxide/chitosan composite 

membranes can be manufactured, scaled efficiently, and used as a membrane in a cross-

flow reactor. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Graphene Oxide and Its Potential Uses in Water Separation 

Graphene oxide is a pseudo two-dimensional solid that contains hydroxyl, 

epoxide and carboxyl functional groups throughout its surface and outer edges. These 

functional groups allow GO to bind with other monomers to form strong lamellar 

structures. These groups also allow GO to adsorb contaminants such as dissolved metals 

and organic dyes (Fan et al., 2012; Gao et al., 2011; Hadi Najafabadi, Irani, Roshanfekr 

Rad, Heydari Haratameh, & Haririan, 2015; Jiao et al., 2015; Liu et al., 2012). Some 

researchers have created a magnetic form of GO for adsorbent recovery (Li, Luo, Li, 

Duan, & Wang, 2014). However, this has not been tested in in situ applications.  

Computational and laboratory studies have determined that GO can also act as a 

molecular sieve with high flux properties for water. When formed into a flat membrane, 

GO could remove small particles via size exclusion while allowing water to pass through 

at a high rate (Perreault et al., 2015a). Modeling results have suggested that GO 

membranes can achieve fluxes of 400 to 4000 L m-2 bar-1 while still rejecting salts and 

with performance increases of 2 to 3 orders of magnitude higher than reverse osmosis 

(Cohen-Tanugi & Grossman, 2012).  

While computational studies have demonstrated that this is possible, laboratory 

studies have encountered many challenges trying to achieve this. The main problem was 
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the dissociation of graphene oxide over time when submerged in water unless a 

crosslinking agent is added to stabilize the membrane. In Yeh, Raidongia, Shao, Yang, & 

Huang (2015) reported that the use of an anopore disk in a vacuum apparatus stopped 

dissociation of GO membranes in water. It was discovered that aluminum from the 

anopore disk leached into the graphene oxide solution and incorporated itself into the 

membrane strengthening its bonds. This allowed the resulting membrane to be tested in 

water-based solutions. Although this issue has been resolved, it is unclear if these 

membranes are feasible for commercial use.  

GO composites and crosslinking materials still need further investigation to 

resolve stability and scalability issues.  

2.2 Chitosan 

Chitosan is a readily available and inexpensive chemical that comes from the 

waste products of the shrimping and crab industry. Chitin which is the major constituent 

of these exoskeletons is deacetylated to form chitosan. Chitosan exhibits resistance to 

most organic solvents and has been studied as membrane material.  

Chitosan consists of anime and hydroxyl functional groups along a “backbone” 

that makes up the chitosan polysaccharide. The amine groups are responsible for the 

complexation of the chitosan material, but the group as a whole adds hydrophilicity to the 

material which can make it a problem for water filtration. A chitosan membrane can lose 

its structural integrity as the material swells when hydrated which would make it a poor 

candidate for water filtration. Although swelling is an issue for water treatment, it is an 

advantage for other applications such as tissue engineering, controlled release of 

fertilizers, and drug delivery (Xu et al., 2013). 
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2.3 Chitosan and Graphene Oxide Materials 

Chitosan and graphene oxide materials haven’t been thoroughly studied as a 

membrane material. There have been studies in which a chitosan/graphene oxide 

composite has been tested for mechanical properties, antimicrobial properties, and the 

absorbance of heavy metals (W. Hu et al., 2010; Perreault, Fonseca de Faria, & 

Elimelech, 2015b; Xi et al., 2016). It was found that the Young’s Modulus increased 4.6 

fold and the tensile strength increased by 2.5 fold when compared with a pristine chitosan 

membrane (Dharupaneedi, Anjanapura, Han, & Aminabhavi, 2014).  However, the 

absorbance for Au(III) and Pd(II) were 1076.649 mg/g and 21.920 mg/g, respectively 

(Liu et al., 2012). Though these initial studies show this composite’s promise more 

studies are needed to understand its capabilities at various loading ratios.  

The characteristics for chitosan/graphene oxide materials are summarized in 

Table 2.1. Chitosan and graphene oxide on their own are unsuitable for membrane 

filtration as they are prone to swell, adsorb methylene blue, and/or disintegrate. However, 

the combination of these materials minimize or completely eliminate these 

characteristics. This is beneficial as the inability to adsorb MB indicates that CSGO can 

act as a membrane rather than a sorbent.  
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Table 2.1 Desired Properties for Competent Membrane 
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CHAPTER III 

HYPOTHESIS 

Vacuum filtered graphene oxide membranes without a crosslinking agent tend to 

dissociate in water, and cannot be used for water filtration. We hypothesize that using 

chitosan as a crosslinking agent would allow for a chitosan-GO composite to form a 

scalable membrane that can be used for treatment of aqueous solutions in cross flow 

filtration. 
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CHAPTER IV 

MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Graphene Oxide 

Graphene oxide was obtained from Graphene Supermarket (graphene-

supermarket.com, Calverton, NY) in three different forms. These include a dispersion at 

6.2 g/L concentration, and two powders that were differentiated by their size and 

structure. One of the powders was called granular graphene which had a thickness of one 

atomic layer with a flake size of 0.3 to 0.07 microns. While the other powder was called 

nano graphene oxide which had a thickness of 1 nm and a diameter of 90 nm.  

 

Figure 4.1 Chemical Structure of Graphene Oxide 

(Nasrollahzadeh, Babaei, Fakhri, & Jaleh, 2015) 
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4.1.2 Chitosan Solution 

Chitosan material used during experimentation was obtained from Sigma Aldrich 

Company (medium molecular weight, Poly-D-glucosamine) 448877-50G. Acetic Acid 

was used as a solvent to dissolve chitosan in water (Sigma Aldrich A6283-2.5L (99%)). 

 

Figure 4.2 Chemical Structures of Chitosan 

(Heckel, Dagmara Konieczna, & Wilhelm, 2013) 

4.1.3 Methylene Blue 

Methylene blue (MB) was purchased from (Sigma Aldrich M9140-100G). The 

challenge solutions were made by mixing methylene blue and water to form solutions 

with concentrations ranging from 1, 10, 50, 100, and 130 mg/L. Methylene blue was used 

in this study as it is a cationic dye with medium molecular weight (319.85 g/mol) that can 

be visually and chemically quantified.  

4.1.4 Nitrocellulose Millipore Membrane 

Nitrocellulose membrane rolls were obtained from Bio-Rad (bio-rad.com, 

Hercules, CA) (Roll, 0.45 µm, 30 cm × 3.5 m, Cat #: 1620115).  
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4.2 Methods 

4.2.1 Chitosan Graphene Oxide (CSGO) Solutions 

CSGO solutions were made with Graphene Oxide powders. A dispersion of GO 

was also used to initially prototype CSGO materials. These solutions were cast into 

membranes which were challenged with methylene blue in a cross-flow reactor. Flux and 

removal efficiently of these membranes were calculated at a pre-determined time interval.  

4.2.1.1 Formulation of CSGO Solution 

Three hundred milligrams of GO and 100 mL of water were transferred into a 

500 mL Nalgene Bottle and sonicated for 60 min. One and a half grams of medium 

molecular weight Chitosan (Sigma Aldrich) were then added to the solution along with 

1 mL of 99% acetic acid. The solution was then stirred for 72 hours.  

4.2.1.2 Formulation of d-x-CSGO Solution 

Three hundred milligrams of GO and 150 mL of water were transferred into a 

500 mL Nalgene Bottle and sonicated for 60 min, 1.5 grams of medium molecular weight 

Chitosan were then added to the solution along with approximately 1 mL of 99% acetic 

acid. The solution was then stirred at for 72 hours.  

4.2.2 Evaporative Membrane Casting (EMC) 

CSGO solution was poured into a desired casting mold and left to dry in an 

incubator and in a bell jar. The drying time was 144 hours for the bell jar and 24 hours for 

the incubator. The incubator was subsequently used for drying all subsequent 

membranes.  
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4.2.3 Scaled Membrane (SM) 

Seven hundred twenty milliliters of d-g-CSGO solution was used to cover an area 

of 1394 cm2 at a loading rate of 2 mg/mL. The volume was poured into a 46 cm × 30 cm 

Plexiglas mold, and dried in a fume hood over a period of 72 hours at 25°C.  

4.2.4 Cross-Flow Method (CFM) 

CSGO membranes were created by pouring 50 mL of a d-x-CSGO solution in a 

97-cm2 mold. These were then, punched out, and placed on a cross-flow reactor. The 

membranes were tested in both a supported and an unsupported mode or configuration. 

Two cross-flow reactors (CFR) were obtained from Sterlitech. One of them was an 

Acrylic CF042A reactor, while the other was a stainless steel CF042SS. Most of the 

experiments were conducted using the acrylic reactor. These reactors were arranged in a 

continuous flow configuration with a recycling loop which allowed for extended run 

times over several days. The cross-flow reactor experiments were conducted at a flow 

rate of 10 mL/min with an operating pressure of 345 kPa, unless specified otherwise. 

Flux data, concentrate & permeate samples were taken and placed in scintillation vials 

every 24 hours.  

 

Figure 4.3 Block Flow Diagram of Experimental Setup for Cross-flow Reactor 



www.manaraa.com

 

14 

 

Figure 4.4 Cross-flow Membrane Experimental Setup for Acrylic Reactor 

 

 

Figure 4.5 Sterlitech Membrane Die (12 cm × 6 cm) 
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Figure 4.6 Cross-flow Membrane Experimental Setup for Stainless Steel Reactor 

 
Methylene blue was used as the model contaminant in this study. Methylene blue 

has a molecular weight of 319.85 g/mol and a density of 1.77 g/mL. MB solution was 

prepared at different concentrations utilizing deionized water. Samples for the 

concentrate and permeate were taken and analyzed using an Agilent 8453 UV-visible 

Spectroscopy System and following ASTM E275. A 1:10 dilution was required for 

samples above 20 mg/L. All samples were analyzed at a fixed wavelength of 660 nm and 

concentrations were calculated based on the calibration curves below. 
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Figure 4.7 MB Calibration Curve at 660 nm  

 

 

Figure 4.8 MB Calibration Curve at 660 nm  
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4.2.5 Morphological and Chemical Analysis  

The surface and cross-section morphologies for samples were studied by scanning 

electron microscopy (SEM, Nova nanolab 200, 15 kV). For the cross-section observation, 

liquid nitrogen was used to freeze the samples before cutting. The films were also coated 

with gold and then analyzed by SEM. ATR-Fourier Transfer Infrared (ATR-FTIR) 

spectrophotometer (Spectrum BX FTIR spectrometer equipped with Pike technology 

accessory) was used to study the molecular interaction between GO and CS. The spectra 

were used at 8 cm-1 resolutions in the range of 4000 to 500 cm-1. X-ray photoelectron 

spectroscopy (XPS - PHI versaprobe 5000 with PHI MultiPack data analysis software) 

was used to evaluate the chemical composition of the films. Initial survey scans (0 – 

1400 eV binding energy) were followed by detailed scans for carbon (275 to 295 eV) and 

nitrogen (390 to 410 eV). High resolution X-ray diffraction (Philips X’Pert- MRD 

diffractometer, Cu K radiation source) was used to determine the crystallinity of the 

samples. XRD patterns were taken within recorded region of 2θ from 5 to 35 with a 

scanning speed of 1 min-1 at the voltage of 45.0 kV and a current of 40.0 mA.  

4.2.6 CSGO Membrane pH Compatibility 

The 5.1 cm × 1 cm coupons of CSGO were prepared and placed in glass test tubes 

with 10 mL of water with pH values ranging from 1 to 12. Coupons were submerged for 

24 hours before analysis.  
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4.2.7 NaOH Treated CSGO Membranes 

The d-g-CSGO membranes were treated with a pH 14 solution of NaOH @ 1 M. 

The membranes were left in a glass container for a period of 24 hours. Afterward the 

membranes were dried with a paper towel and placed in a CFR for testing. 

4.2.8 Thermal Treated CSGO Membranes 

The d-g-CSGO membranes were placed in an oven at 105°C for a period of 

24 hours before being placed in a CFR for testing.  
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CHAPTER V 

RESULTS 

5.1 Manufacturing Scalable CSGO Membranes  

5.1.1 Evaporative Formation of CSGO 

Two membranes were formed in a petri dish using the evaporative casting method 

(ECM). One was placed in an incubator, the other in a bell jar. The resulting membranes 

were 150 μm thick with a strong, plastic-like texture. Upon removal from the petri dish, 

small holes were observed throughout the membrane but these did not appear to weaken 

the membrane.  

 

Figure 5.1 CSGO Solution After Drying for 24 Hours (Left – CSGO Solution Dried in 
a Bell Jar; Right - CSGO Solution Dried in an Incubator) 
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During the membrane’s formation an interesting characteristic was observed. 

Instead of the membrane congealing and drying uniformly, a nucleation site formed along 

a corner and radiated throughout the membrane during the drying process. The nucleation 

site can be seen on the left membrane in Figure 5.1. This behavior is characteristic of 

CSGO materials as it occurred while drying every sample.  

A CSGO membrane capable of fitting a cross-flow reactor was desired. ECM was 

adjusted for a 200 mL solution and cast in an acrylic mold. The mold was then placed in 

an incubator for 48 hours. The resulting CSGO material had similar properties to past 

CSGO materials and was of sufficient size that it could be cut to fit a cross-flow reactor. 

 

Figure 5.2 Mold with 200 mL of CSGO Dispersion Solution 
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Figure 5.3 Dried d-CSGO Membrane After 72 Hours of Incubation 

 
5.1.2 CSGO Membranes in a Cross-flow Reactor 

A CSGO membrane using d-GO was prepared using ECM and placed in a cross-

flow reactor. The membrane was challenged against a solution of 10 mg/L MB using 

CFM. Initially, the membrane had a small amount of clear permeate accumulate in the 

permeate reservoir. But the membrane failed soon after causing methylene blue to 

accumulate in the permeate reservoir. This failure occurred because of chitosan’s 

tendency to absorb water. Although some expansion was expected, the expansion 

observed was significantly greater than anticipated. The expansion led to the membrane 

thinning in areas, thus losing its structural stability and failing due to tangential forces 

acting upon the membrane causing it to tear.  
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Figure 5.4 d-CSGO Membrane on Cross-flow Reactor 

 

 

Figure 5.5 Membrane Filtering Methylene Blue (10 mg/000 
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Figure 5.6 Top View of d-CSGO Membrane After Failure 

 

Figure 5.7 Side View of d-CSGO Membrane After Failure 

 
A n-CSGO membrane was cast and tested using a CFR. This membrane was 

virtually impermeable after 6 hours on the cross-flow reactor at 344.74 kPa. When the 

CFR was opened it became obvious why there was no permeate. The membrane failed 

due to chitosan hydration, exponential expansion, and structural deformation. 
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Figure 5.8 n-CSGO Membrane After Trimming and n-CSGO Membrane in Cross-
flow Reactor 

 

 

Figure 5.9 n-CSGO Membrane Failure After 6 Hours in a Cross-flow Reactor 

 
This kind of behavior was not seen in dead end filtration as constant pressure 

throughout the membrane prevents swelling. While in cross-flow filtration forces exerted 

on a membrane are in tangential direction. CSGO membranes also swelled to several 

times their original thickness exacerbating the structural deformities. Thus, freestanding 

CSGO membranes cannot be used for cross-flow filtration without a support of some 

kind.  
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A method was developed to reduce the effects of CSGO membranes by adding 

structural support and diluting the CSGO solution by 50%. This allowed membrane to 

swell within the confines of the support, while still allowing the membrane to be used for 

cross-flow filtration.  

5.1.3 Membrane Performance  

The new membranes were designated d-x-CSGO, these were created and tested in 

a CFR. These membranes were permeable with low swelling that could be controlled by 

external supports. As such, d-g-CSGO membranes were challenged with methylene blue 

at 10 mg/L with a feed rate of 10 mL/min at 344.74 kPa over 72 hours. The resulting flux 

was 1.25 LMH. 

 

 

Figure 5.10 Bottom of the Cross-flow Reactor 

 
Using the same membrane, a subsequent experiment was performed in which the 

membrane was challenged with a 20 mg/L solution of methylene blue for the same 

duration. The resulting flux was 1.68 LMH. In both flow through experiments, the feed 

solution was being concentrated with little breakthrough of methylene blue, suggesting 

that the mechanism of removal was size exclusion.  
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Figure 5.11 From Left to Right: 10 mg/L Methylene Feed, Membrane Permeate, Feed 
Concentrate 

 

Samples were analyzed via UV-visible spectroscopy using ASTM E257, 

concentrations were calculated using the calibration curves found in Figures 4.7 and 4.8.  

 
 

Table 5.1 d-g-CSGO Flux of Methylene Blue at 10 mg/L and 20 mg/L 

 
 

The membrane support was changed from Whatman No. 5 paper filter to 0.45 µm 

nitrocellulose support. The new support increased flux through the membrane by 50% 

while maintaining structural support for the membrane. Nitrocellulose was used as a 

structural support for all experimental runs hereafter.  
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Granular and nano based CSGO membranes were made by ECM and challenged 

against methylene blue solutions varying from 1 mg/L to 100 mg/L.  

 

Table 5.2 Average Flux and Recovery of Methylene Blue Through d-n-CSGO After 
72 Hours 

 

 

Figure 5.12 d-g-CSGO Flux and Removal Rates Over Various Concentrations of 
Methylene Blue 
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Figure 5.13 d-n-CSGO Flux and Removal Rates Over Various Concentrations of 
Methylene Blue 

 

The difference in flux for granular and nano CSGO membranes at 345 kPa was 

not significantly different from one membrane to the other. However, by increasing the 

pressure exerted upon these membranes the difference in flux can be measured. The d-n-

CSGO membranes exhibited about half of the flux of d-g-CSGO membranes at pressures 

between 1.38 MPa to 4.14 MPa as seen in Figure 5.14.  
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Figure 5.14 d-g-CSGO and d-n-CSGO Water Flux with Varying Pressure  

 
To verify the integrity and removal rate of d-g-CSGO membranes at these 

pressures a 50 mg/L solution was used as a simulant (Figure 5.15). The membrane was 

then subjected to four different pressures between 1.38 MPa and 4.14 MPa. Between 

these pressures flux varied linearly from 2.5 to 3.5 LMH with 100% removal of the dye at 

each point (Figure 5.15). 
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Figure 5.15 Flux vs Pressure for 50 ppm Methylene Blue 

5.2 Membrane Characterization 

Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), 

and X-ray diffraction (XRD) were carried out. The methods used to obtain the figures 

below are described in section 4.2.5.  

CSGO and Chitosan solutions were created using the ECM and cast as 

membranes. These were then analyzed via SEM, XPS, and XRD as described in 

section 4.2.5. 
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Figure 5.16 XRD Chitosan, d-g-CSGO, d-n-CSGO 

 
Chitosan and CSGO membranes were analyzed via XRD. Peaks were observed 

around the 12 degree range of 2 Theta (Figure 5.16). This indicates that there is 

crystallinity and lamellar order present in the analyzed material. Chitosan and d-g-CSGO 

membrane exhibited this structural behavior with d-g-CSGO being highly ordered 

compared to the chitosan membrane. However, this property is lost when the membrane 

is wetted, as it loses its structural stability (Figure 5.17). 

 

 

Figure 5.17 XRD of d-g-CSGO Membrane Wet vs Dry 
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  a.  b.  

Figure 5.18 XPS, a. Chitosan and b. d-g-CSGO 

 
XPS results for d-g-CSGO in Figure 5.17b indicate an increase in the protonated 

amine group as compared to a pristine chitosan membrane in Figure 5.17a. The increase 

in the protonated amine group indicates that new amine bonds are being formed in 

d-g-CSGO membranes. This indicates strong bonding between chitosan and graphene 

oxide.  
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Figure 5.19 SEM Cross Sections: a. Graphene Oxide, b. Chitosan, c. d-g-CSGO, and 
d. d-n-CSGO 

 
Cross sections of chitosan and CSGO membranes were observed via SEM as 

designated in Figure 5.19. Their characteristic length and internal structure are also 

presented. The characteristic lengths for these membranes are shown in Table 5.3. 

 

Table 5.3 Characteristic Lengths by SEM 

Membrane Characteristic Length (μm) 
GO 8.24 

Chitosan 52.50 
d-g-CSGO 41.33 
d-n-CSGO 39.38 
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5.3  pH Compatibility 

NaOH and HCl solutions were prepared with pH values ranging from 1 to 12. Ten 

milliliters of each solution was added to a 15 mL glass vial. A coupon cut from a CSGO 

membrane was placed in each vial and submerged into the liquid (Figures 5.20 and 5.21). 

Observations were taken at 24 and 336 hours.  

 

 

Figure 5.20 Five Minutes After Initial CSGO Coupon Submersion: A. pH 1, B. pH 3, 
C. pH 7, and D. pH 12 

 

A B 

C D 
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a.    

b.  

Figure 5.21 1 pH to 12 pH Test of d-g-CSGO Coupons at a. 24 Hours and b. 336 Hours 

 
The CSGO coupons at 24 hours for pH values 1 to 4 had exponentially expanded 

from their initial size; while those in solution at pH 5 to 12 saw either slight to no 

expansion as the pH increased. The pH of each solution was determined using color pH 

indicator strips. After 24 hour, pH values of solutions prepared at pHs 1 to 4 were 

maintained, while the pH of solutions with initial values between 5 and 11 decreased to 

pH 5. However, the pH 12 solution was only reduced to a pH of 11 after 24 hours.  

The coupons observed again after being submerged for an additional 311 hours. 

The coupons in solutions at pH 2 and 3 disintegrated completely, while the coupons in 

solutions at pH 1, 4 to 11 expanded to over twice their original size. The coupon in the 

pH 12 solution exhibited no sign of expansion or degradation.  

5.4 Treated d-g-CSGO Membranes 

To further minimize swelling and flux variance of CSGO membranes, the residual 

acetic acid had to be neutralized. As such, an additional step was added to the 
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manufacturing process in which the acetic acid was neutralized by either a NaOH base 

dip, or vaporization at 70°C.  

This step was performed to minimize acetic acid interference with the chitosan-

GO bonding. The residual acetic acid may be allowing some chitosan to be diluted by the 

challenge solution, thus creating the variance shown in Figures 5.12 and 5.13. 

 

 

Figure 5.22 Treated d-g-CSGO Membranes at 345 kPa with 10 mg/L MB Solution 

 

Table 5.4 Treated CSGO Membranes Flux and Removal 

 

This treatment appeared to be successful at stabilizing the membranes with the 

drawback of reduced flux at 345 kPa (Figure 5.22). However, at pressures higher than 
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1.4 MPa the difference in flux is significantly reduced (Figure 5.23). Allowing for the 

treated membranes to have greater stability without sacrificing flux rates at higher 

pressures.  

 

Figure 5.23 Treated and Untreated d-g-CSGO at High Pressures 

 

5.4.1 Scaled Up Membrane 

To prove that ECM is a viable method for scaling up of CSGO materials a 

30 cm × 42 cm (1260 cm2) membrane was produced. The scaled membrane method (SM) 

was used to produce the scaled up membrane using 720 mL of d-g-CSFO solution poured 

onto a Plexiglas mold.  
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Figure 5.24 d-g-CSGO Solution After Pour 

 
A time lapse over 72 hours was recorded while the solution dried, ultimately 

forming the membrane. The resulting time lapse video (https://www.youtube.com/ 

watch?v=BplAGoNMz54) demonstrated how the membrane was set, as well as the effect 

of the nucleation site on the drying process as it radiated outward. A dry nucleation site 

formed and expanded until the membrane reached its final state. It took approximately 

72 hours for the membrane to dry.  

 

Figure 5.25 Scaled d-g-CSGO Membrane 

https://www.youtube.com/watch?v=BplAGoNMz54
https://www.youtube.com/watch?v=BplAGoNMz54
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CHAPTER VI 

DISCUSSION 

6.1 Membrane Formation 

When GO is dispersed in solution, it has a metallic-like sheen. The GO sheen is 

observable when poured into a mold as it visibly moves around in an effort to find its 

most stable formation. This may be evidence of GO interacting with chitosan. It is also 

likely that this GO-chitosan self-assembly affects the drying of the chitosan solution. 

Normally, chitosan solutions prepared in the laboratory has demonstrated its propensity 

to congeal as it dries in a uniform “top down” fashion. However, when CSGO 

membranes form, they dry anisotropically while forming the final product.  

During the course of this study, it was noted that suspended GO particles form 

linear patterns when poured into a flat mold. These patterns were observed instantly, and 

sometimes reformed when agitated. Thereby, suggesting that GO particles are bonding 

with chitosan and also self-assembling when placed on a flat surface.  

During dehydration of the solution, a nucleation site was observed at a single 

point in the viscous solution which was subsequently reduced. GO lamellar layers 

appeared to be compressed along the membrane/solution boundary. This action was 

demonstrated to be irreversible as once the membrane was formed it would not revert 

back into solution by simple rehydration; rather it would require mechanical and 

chemical breakdown.  
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6.2 pH Compatibility 

The d-g-CSGO coupons were submerged in solution with pH values ranging from 

1 to 12. An interesting behavior was observed in which almost all the coupons expanded 

when submerged, however, the extent of that expansion was affected by the pH. Coupons 

submerged in acidic solutions expanded to over twice their original size, whereas 

coupons submerged in basic solutions expanded slightly or not at all (Figure 5.21).  

This indicates that the membrane is interacting with the H+ ions in solution 

causing deformation and expansion. This behavior does not occur in the basic solutions 

as the membrane appears to have a lesser affinity for OH- ions; hence the absence of 

swelling of the membrane.  

After 336 hours the coupons placed in acidic solutions were either deformed or 

disassociated completely. While those in basic solutions remained more intact, but still 

deformed with the exception of the coupon placed in a basic solution at pH 12. This 

coupon exhibited no sign of deformity when submerged.  

This expands upon what was observed in Section 5.4 with treated membranes. 

After the acetic acid was completely neutralized, the membranes lost flux but gained 

structural stability that was not demonstrated with the past membranes. This suggests that 

if the residual acetic acid is not removed, it aids in destabilizing the membrane by 

solubilizing chitosan (Figure 5.22). 

6.3 Membrane Characteristics and Performance 

The graphene oxides selected for use in this study were the nano and granular 

graphene oxides purchased from Graphene Supermarket, Inc. The two types of GO 
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powders were chosen based on particle size, dimensions ranging from 90 nm in diameter 

for n-GO and 0.3 to 0.07 micron sheets for g-GO, to compare membrane performance.  

This difference in particle size resulted in differences across the integral structure 

of the membrane. The internal characteristics of d-g-CSGO and d-n-CSGO membranes 

are fundamentally different, as seen in Figure 5.19. The d-g-CSGO forms a lamellar 

structure similar to that of a GO membrane. While d-n-CSGO incorporates itself 

throughout the solution forming an amorphous structure similar to that of a chitosan 

membrane.  

The differentiating structures of these membranes depends on how GO particles 

interact with chitosan. In a d-g-CSGO membrane g-GO uses chitosan as a building block 

to help assemble its preferred planar structure. While in d-n-CSGO membranes n-GO 

incorporates itself into chitosan’s structure without altering it significantly (Figure 5.19).  

The effect of graphene oxide on the internal membrane structure can be confirmed 

via X-ray powder diffraction (XRD) in Figure 5.14. It was observed that g-GO added a 

crystalline structure to chitosan’s usual amorphous structure, while n-GO had almost no 

effect on chitosan structure. This confirms the change in a chitosan membrane’s structure 

by g-GO seen in Figure 5.19c.  

These characteristics are indicative of a difference between the two membranes at 

a microscopic level. However, these differences are not perceived when used for water 

filtration for the ranges tested in this work. As shown in Table 5.2, the average flux and 

recovery between the two types of membranes are virtually identical with only slight 

differences between them.  
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Due to the differences in the membrane’s structure, it would be expected that 

there would be significant differences in the removal or flux rates. But there was no such 

difference observed. The differentiation of particle shape or size is what can explain the 

structural difference between the two membranes.  

The particle shape and size of GO powders influence the arrangement of chitosan 

throughout the membrane. Granular graphene oxide powder contains flake sizes ranging 

from 0.3 to 0.7 microns in which more than 50% are arranged within 1 atomic layer. This 

allows the granular GO to arrange itself into GO’s preferred lamellar structure while also 

incorporating chitosan into its matrix. This electrostatic interaction observed via XPS in 

Figure 5.18. Chitosan attaches itself onto the carboxylic acids found around the edges and 

the surface of GO forming protonated amides. By GO forming these bonds with chitosan 

it is able to form a stable material that also increases the strength of the chitosan (Lim 

et al., 2012; Shao et al., 2013; Zuo et al., 2013).  

On the other hand, nano GO does not alter these properties to the extent of that of 

the g-GO. The size of n-GO (90 nm) prohibits significant alteration of the initial chitosan 

structure. As it incorporates itself throughout the membrane, n-GO makes small 

adjustments while maintaining chitosan’s amorphous structure. Thus, the increased 

crystallinity and ordered structure observed in d-g-CSGO is not present in d-n-CSGO 

membranes.  

Fluxes and removal rates presented in Table 5.2 are not significantly different 

between the membrane types even though their internal structures are completely 

different. This suggests that the internal structure of a CSGO membrane may be 
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insignificant to its filtration characteristics. Instead thickness and permeable pathways 

can be considered determining factors for flux in these membranes.  

Rather than passing through open channels or pores, water incorporates into the 

membrane creating hydrated channels. These channels allow water to pass through the 

membrane while excluding other chemicals. As the membrane continues to hydrate, the 

channels continue to expand thus allowing a greater percentage of the contaminant to 

pass through.  

 

 

Figure 6.1 Methylene Blue (50 ppm) Concentration vs Time at 345 kPa 

 
This trend is observed when the concentration of the methylene blue permeate 

increases over time as a result of these expanding channels, which are created due to the 

degradation of chitosan. This occurs when the residual acetic acid dissolves the chitosan. 

A clear indication of this is the increasing percentage of dye permeating the untreated 

membrane versus the treated membrane (Figure 6.2).  



www.manaraa.com

 

44 

 

Figure 6.2 Treated and Untreated Rejection Rates of Methylene Blue @ 100 ppm 

 
Removing the acetic acid is essential for the long-term stability of CSGO 

membranes. Even though flux rates are diminished at low pressures, the differences are 

negligible at higher pressures (Figure 5.23). The increased structural stability of treated 

membranes indicates a longer lifespan in comparison to membranes containing residual 

acetic acid.  

6.4 Cost of Manufacture  

Graphene oxide can be obtained commercially from a number of sources with 

varying costs per gram of GO. These usually range from $100 to $300 USD per gram of 

graphene oxide. In this study the graphene oxide obtained from Graphene Supermarket 

had a markup of $125 USD per 100 mg for nano GO, while granular GO was marked up 

as $250 USD per gram. This cost roughly $1.25 USD per mg of nano GO and $0.25 USD 



www.manaraa.com

 

45 

per mg of granular graphene oxide. Making the cost differential per milligram of nano 

graphene oxide five times greater than that of granular graphene oxide. (Appendix A) 

While there is also a cost for chitosan, it can be considered negligible for this 

calculation. The chitosan for this study cost roughly $0.011/mg or $0.55 per membrane. 

Thus, making graphene oxide the material’s cost driver for CSGO membrane 

manufacture. When manufacturing a 72 cm2 cross flow membrane nano and granular 

membranes cost $125 USD and $25 USD in materials, respectively.  

 

Table 6.1 Commercial Membrane Costs 

 
 

When compared to commercial Reverse Osmosis, Nano-Filtration, and Ultra-

filtration membranes, sold by Sterlitech to fit the crossflow reactor used in this study, 

d-g-CSGO membranes can be financially competitive. However, d-n-CSGO membranes 

on the other hand are considered too expensive as they are roughly five times the cost of 

what is commercially available with product markups already in place.  

This makes d-n-CSGO unfavorable from a financial and budgetary perspective. 

As d-g-CSGO exhibited similar qualities and properties of d-n-CSGO at a fifth of the 

cost; making d-g-CSGO the most preferable option when manufacturing CSGO 

membranes for cross-flow reactors.  
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CHAPTER VII 

CONCLUSIONS 

The following conclusions were drawn from this work. 

 Chitosan and graphene oxide (CSGO) can be mixed together and formed 
into a membrane via solution casting. This method was proven to be 
scalable for membranes with an area of up to 1260 cm2.  

 The structural support provided by Nitrocellulose to CSGO membranes 
allow these membranes to be used in a cross-flow reactor. Without this 
extra structural support the external forces acting upon the membrane will 
cause the membrane to elongate and fail. This is likely due to the presence 
of residual acetic acid within the membrane. By removing the residual 
acetic acid these membranes may exhibit low flux at 345 kPa with 
significantly decreased variability.  

 CSGO membranes separated over 95% of methylene blue via size 
exclusion at various concentrations and pressures using cross-flow 
filtration. CSGO membranes also exhibited increased durability when the 
residual acetic acid was removed with no significant decrease in flux at 
pressures higher than 1.4 MPa.  
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CHAPTER VIII 

FUTURE WORK AND STUDY SUMMARY 

8.1 Future Work 

Moving forward, work with CSGO membranes should focus on the following:  

 Improve membrane flux by optimizing the chitosan and graphene oxide 
composition for high contaminant removal rates;  

 Evaluate CSGO membranes for potential removal of negatively charged 
dyes, radionuclides, salts of difference valencies, and aromatic 
compounds;  

 Investigate possible mechanisms to increase the durability of CSGO 
membranes over an extended period of time; and comparing the results 
above against nano-filtration and ultra-filtration membranes.  
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